Laura Mancinska

University of Waterloo

July 30, 2008

Outline

- Basics of representation theory
- Schur duality
- Applications

Basics of representation theory

Definition

A representation (ϕ, \mathbb{C}^n) over the vector space \mathbb{C}^n of a group G is a homomorphism $\phi: G \to \operatorname{GL}(n, \mathbb{C})$.

Definition

A representation (ϕ, \mathbb{C}^n) over the vector space \mathbb{C}^n of a group G is a homomorphism $\phi: G \to \operatorname{GL}(n, \mathbb{C})$.

- \bullet Homomorphism: $\phi(g_1g_2)=\phi(g_1)\phi(g_2)$ for all $g_1,g_2\in G$
- $GL(n, \mathbb{C})$: $n \times n$ invertible complex matrices

Definition

A representation (ϕ, \mathbb{C}^n) over the vector space \mathbb{C}^n of a group G is a homomorphism $\phi: G \to \operatorname{GL}(n, \mathbb{C})$.

Example

Every group has trivial representation $(\phi_{\text{triv}}, \mathbb{C})$: $\phi_{\text{triv}}(g) = 1$.

Definition

A representation (ϕ, \mathbb{C}^n) over the vector space \mathbb{C}^n of a group G is a homomorphism $\phi: G \to \operatorname{GL}(n, \mathbb{C})$.

Example

Every group has trivial representation $(\phi_{\text{triv}}, \mathbb{C})$: $\phi_{\text{triv}}(g) = 1$.

Example

 S_n has representation (ϕ_{sgn}, \mathbb{C}) given by $\phi_{sgn}(\pi) = sgn(\pi)$.

Definition

A representation (ϕ, \mathbb{C}^n) over the vector space \mathbb{C}^n of a group G is a homomorphism $\phi: G \to \operatorname{GL}(n, \mathbb{C})$.

Example

Every group has trivial representation $(\phi_{\text{triv}}, \mathbb{C})$: $\phi_{\text{triv}}(g) = 1$.

Example

 S_n has representation (ϕ_{sgn}, \mathbb{C}) given by $\phi_{sgn}(\pi) = sgn(\pi)$.

Example

Representations of $\mathcal{U}(d)$ include:

•
$$(\phi, \left(\mathbb{C}^d
ight)^{\otimes n})$$
 given by $\phi(U) = U^{\otimes n}$

Definition

A representation (ϕ, \mathbb{C}^n) over the vector space \mathbb{C}^n of a group G is a homomorphism $\phi: G \to \operatorname{GL}(n, \mathbb{C})$.

Example

Every group has trivial representation $(\phi_{\text{triv}}, \mathbb{C})$: $\phi_{\text{triv}}(g) = 1$.

Example

 S_n has representation $(\phi_{\operatorname{sgn}}, \mathbb{C})$ given by $\phi_{\operatorname{sgn}}(\pi) = \operatorname{sgn}(\pi)$.

Example

Representations of $\mathcal{U}(d)$ include:

•
$$(\phi, (\mathbb{C}^d)^{\otimes n})$$
 given by $\phi(U) = U^{\otimes n}$

• $(\phi_{\det}, \mathbb{C})$ given by $\phi_{\det}(U) = \det(U)$

Direct sum and tensor product

Definition

Let (ϕ_1, V_1) and (ϕ_2, V_2) be representations of G. Then representations $(\phi_1 \oplus \phi_2, V_1 \oplus V_2)$ and $(\phi_1 \otimes \phi_2, V_1 \otimes V_2)$ of G are their direct sum and tensor product, respectively.

Direct sum and tensor product

Definition

Let (ϕ_1, V_1) and (ϕ_2, V_2) be representations of G. Then representations $(\phi_1 \oplus \phi_2, V_1 \oplus V_2)$ and $(\phi_1 \otimes \phi_2, V_1 \otimes V_2)$ of G are their direct sum and tensor product, respectively.

Example

Let (ϕ_1, \mathbb{C}^2) , (ϕ_2, \mathbb{C}) be representations of $\mathcal{U}(2)$ such that

$$\phi_1(U) = U \qquad \phi_2(U) = 1$$

Direct sum and tensor product

Definition

Let (ϕ_1, V_1) and (ϕ_2, V_2) be representations of G. Then representations $(\phi_1 \oplus \phi_2, V_1 \oplus V_2)$ and $(\phi_1 \otimes \phi_2, V_1 \otimes V_2)$ of G are their direct sum and tensor product, respectively.

Example

Let (ϕ_1, \mathbb{C}^2) , (ϕ_2, \mathbb{C}) be representations of $\mathcal{U}(2)$ such that

$$\phi_1(U) = U \qquad \phi_2(U) = 1$$

Then $(\phi_1 \oplus \phi_2, \mathbb{C}^3)$ is their direct sum and $(\phi_1 \otimes \phi_2, \mathbb{C}^2)$ is their tensor product.

$$(\phi_1 \oplus \phi_2)(U) = U \oplus 1 = \begin{pmatrix} U & 0 \\ 0 & 1 \end{pmatrix} \qquad (\phi_1 \otimes \phi_2)(U) = U \otimes 1 = U$$

Irreducible representations

Definition

We say that a representation (ϕ, V) of group G is irreducible if it is not a direct sum of at least two other representations.

Irreducible representations

Definition

We say that a representation (ϕ, V) of group G is irreducible if it is not a direct sum of at least two other representations.

Example

If the representation space V of representation (ϕ, V) is 1-dimensional, then (ϕ, V) is irreducible.

Irreducible representations

Definition

We say that a representation (ϕ, V) of group G is irreducible if it is not a direct sum of at least two other representations.

Example

If the representation space V of representation (ϕ,V) is 1-dimensional, then (ϕ,V) is irreducible.

Theorem

Every representation (ϕ, V) of G is isomorphic to a direct sum of irreducible representations of G:

$$\phi(g) \cong \bigoplus_{\lambda \in \hat{G}} \lambda(g) \otimes I_{n_{\lambda}}$$

Consider representations

•
$$\left(\mathbf{Q}, \left(\mathbb{C}^{d}\right)^{\otimes n}
ight)$$
 of $\mathcal{U}(d)$, where

 $\mathbf{Q}(U) |i_1 i_2 \dots i_n \rangle = U |i_1\rangle U |i_2\rangle \dots U |i_n\rangle$

Consider representations

•
$$\left(\mathbf{Q}, \left(\mathbb{C}^{d}
ight)^{\otimes n}
ight)$$
 of $\mathcal{U}(d)$, where

 $\mathbf{Q}(U) |i_1 i_2 \dots i_n \rangle = U |i_1\rangle U |i_2\rangle \dots U |i_n\rangle$

•
$$\left(\mathbf{P}, \left(\mathbb{C}^{d}\right)^{\otimes n}\right)$$
 of S_n , where
 $\mathbf{P}(\pi) \left|i_1 i_2 \dots i_n\right\rangle = \left|i_{\pi^{-1}(1)}\right\rangle \left|i_{\pi^{-1}(2)}\right\rangle \dots \left|i_{\pi^{-1}(n)}\right\rangle$

Consider representations

•
$$\left(\mathbf{Q}, \left(\mathbb{C}^{d}
ight)^{\otimes n}
ight)$$
 of $\mathcal{U}(d)$, where

 $\mathbf{Q}(U) |i_1 i_2 \dots i_n \rangle = U |i_1\rangle U |i_2\rangle \dots U |i_n\rangle$

•
$$\left(\mathbf{P}, \left(\mathbb{C}^{d}\right)^{\otimes n}\right)$$
 of S_{n} , where

$$\mathbf{P}(\pi) \left|i_{1}i_{2}\dots i_{n}\right\rangle = \left|i_{\pi^{-1}(1)}\right\rangle \left|i_{\pi^{-1}(2)}\right\rangle \dots \left|i_{\pi^{-1}(n)}\right\rangle$$

We can consider representation $(\mathbf{QP}, (\mathbb{C}^d)^{\otimes n})$ of $\mathcal{U}(d) \times S_n$, given by

$$\mathbf{QP}(U,\pi)=\mathbf{Q}(U)\mathbf{P}(\pi)$$

Consider representations

•
$$\left(\mathbf{Q}, \left(\mathbb{C}^{d}
ight)^{\otimes n}
ight)$$
 of $\mathcal{U}(d)$, where

 $\mathbf{Q}(U) |i_1 i_2 \dots i_n \rangle = U |i_1\rangle U |i_2\rangle \dots U |i_n\rangle$

•
$$\left(\mathbf{P}, \left(\mathbb{C}^{d}\right)^{\otimes n}\right)$$
 of S_{n} , where

$$\mathbf{P}(\pi) \left|i_{1}i_{2}\dots i_{n}\right\rangle = \left|i_{\pi^{-1}(1)}\right\rangle \left|i_{\pi^{-1}(2)}\right\rangle \dots \left|i_{\pi^{-1}(n)}\right\rangle$$

We can consider representation $(\mathbf{QP}, (\mathbb{C}^d)^{\otimes n})$ of $\mathcal{U}(d) \times S_n$, given by

$$\mathbf{QP}(U,\pi) = \mathbf{Q}(U)\mathbf{P}(\pi) = \mathbf{P}(\pi)\mathbf{Q}(U)$$

Theorem. (Schur duality)

There exist a basis (Schur basis) in which representation $\left(\mathbf{QP}, \left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ of $\mathcal{U}(d) \times S_{n}$ decomposes into irreducible representations \mathbf{q}_{λ} and \mathbf{p}_{λ} of $\mathcal{U}(d)$ and S_{n} respectively:

$$\mathbf{QP}(U,\pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n,d)} \mathbf{q}_{\lambda}(U) \otimes \mathbf{p}_{\lambda}(\pi)$$

Theorem. (Schur duality)

There exist a basis (Schur basis) in which representation $\left(\mathbf{QP}, \left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ of $\mathcal{U}(d) \times S_{n}$ decomposes into irreducible representations \mathbf{q}_{λ} and \mathbf{p}_{λ} of $\mathcal{U}(d)$ and S_{n} respectively:

$$\mathbf{QP}(U,\pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n,d)} \mathbf{q}_{\lambda}(U) \otimes \mathbf{p}_{\lambda}(\pi)$$

Definition

Schur transform $U_{\rm sch}$ is unitary transformation implementing the base change from standard basis to Schur basis:

$$U_{\rm sch} = \sum_{i} \left| {\rm sch}_{i} \right\rangle \left\langle i \right|$$

$\mathbf{QP}(U,\pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n,d)} \mathbf{q}_{\lambda}(U) \otimes \mathbf{p}_{\lambda}(\pi)$

$$\mathbf{QP}(U,\pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n,d)} \mathbf{q}_{\lambda}(U) \otimes \mathbf{p}_{\lambda}(\pi)$$

Example

$$\mathbf{QP}(U,\pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n,d)} \mathbf{q}_{\lambda}(U) \otimes \mathbf{p}_{\lambda}(\pi)$$

Example

$$\mathbf{QP}(U,\pi) \cong \overbrace{(\mathbf{q}_{\det}(U) \otimes \mathbf{p}_{\operatorname{sgn}}(\pi))}^{\lambda = (1,1)} \oplus \overbrace{(\mathbf{q}_{\operatorname{3\,dim}}(U) \otimes \mathbf{p}_{\operatorname{triv}}(\pi))}^{\lambda = (2,0)}$$

$$\mathbf{QP}(U,\pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n,d)} \mathbf{q}_{\lambda}(U) \otimes \mathbf{p}_{\lambda}(\pi)$$

Example

$$\mathbf{QP}(U,\pi) \cong \overbrace{(\mathbf{q}_{det}(U) \otimes \mathbf{p}_{sgn}(\pi))}^{\lambda = (1,1)} \oplus \overbrace{(\mathbf{q}_{3\dim}(U) \otimes \mathbf{p}_{triv}(\pi))}^{\lambda = (2,0)} =$$

$$= \begin{pmatrix} \det(U)\operatorname{sgn}(\pi) & 0\\ 0 & \mathbf{q}_{3\dim}(U) \end{pmatrix}$$

$$\mathbf{QP}(U,\pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n,d)} \mathbf{q}_{\lambda}(U) \otimes \mathbf{p}_{\lambda}(\pi)$$

Example

$$\mathbf{QP}(U,\pi) \cong \overbrace{(\mathbf{q}_{det}(U) \otimes \mathbf{p}_{sgn}(\pi))}^{\lambda=(1,1)} \oplus \overbrace{(\mathbf{q}_{3\dim}(U) \otimes \mathbf{p}_{triv}(\pi))}^{\lambda=(2,0)} =$$

$$= \begin{pmatrix} \det(U)\operatorname{sgn}(\pi) & 0\\ 0 & \mathbf{q}_{3\dim}(U) \end{pmatrix} \begin{array}{c} |01\rangle - |10\rangle\\ |00\rangle, |11\rangle, |01\rangle + |10\rangle \end{cases}$$

Applications

 $P_{\pi} = \mathbf{QP}(\mathbf{I}, \pi)$

$$P_{\pi} = \mathbf{QP}(I, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n,d)} \mathbf{q}_{\lambda}(I) \otimes \mathbf{p}_{\lambda}(\pi)$$

$$P_{\pi} = \mathbf{QP}(\boldsymbol{I}, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n,d)} \boldsymbol{I}_{\operatorname{dim}(\mathbf{q}_{\lambda})} \otimes \mathbf{p}_{\lambda}(\pi)$$

$$P_{\pi} = \mathbf{QP}(\boldsymbol{I}, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n,d)} \boldsymbol{I}_{\operatorname{dim}(\mathbf{q}_{\lambda})} \otimes \mathbf{p}_{\lambda}(\pi)$$

Example

$$\mathbf{QP}(U,\pi) \cong \begin{pmatrix} \det(U)\operatorname{sgn}(\pi) & 0\\ 0 & \mathbf{q}_{3\dim}(U) \end{pmatrix}$$

$$P_{\pi} = \mathbf{QP}(\boldsymbol{I}, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n,d)} \boldsymbol{I}_{\operatorname{dim}(\mathbf{q}_{\lambda})} \otimes \mathbf{p}_{\lambda}(\pi)$$

Example

$$\mathbf{QP}(\boldsymbol{I}, \pi) \cong \begin{pmatrix} \det(\boldsymbol{I}) \operatorname{sgn}(\pi) & 0\\ 0 & \mathbf{q}_{3 \dim}(\boldsymbol{I}) \end{pmatrix}$$

$$P_{\pi} = \mathbf{QP}(\boldsymbol{I}, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n,d)} \boldsymbol{I}_{\operatorname{dim}(\mathbf{q}_{\lambda})} \otimes \mathbf{p}_{\lambda}(\pi)$$

Example

$$P_{\pi} = \mathbf{QP}(\boldsymbol{I}, \pi) \cong \begin{pmatrix} \det(\boldsymbol{I}) \operatorname{sgn}(\pi) & 0\\ 0 & \mathbf{q}_{3 \dim}(\boldsymbol{I}) \end{pmatrix}$$

$$P_{\pi} = \mathbf{QP}(\mathbf{I}, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n,d)} \mathbf{I}_{\dim(\mathbf{q}_{\lambda})} \otimes \mathbf{p}_{\lambda}(\pi)$$

Example

$$P_{\pi} = \mathbf{QP}(\boldsymbol{I}, \pi) \cong \begin{pmatrix} \det(\boldsymbol{I}) \operatorname{sgn}(\pi) & 0\\ 0 & \mathbf{q}_{3 \dim}(\boldsymbol{I}) \end{pmatrix} = \begin{pmatrix} \operatorname{sgn}(\pi) & 0\\ 0 & I_{3} \end{pmatrix}$$

$$P_{\pi} = \mathbf{QP}(\mathbf{I}, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n,d)} \mathbf{I}_{\dim(\mathbf{q}_{\lambda})} \otimes \mathbf{p}_{\lambda}(\pi)$$

Example

Recall Schur duality for 2 qubits:

$$P_{\pi} = \mathbf{QP}(\boldsymbol{I}, \pi) \cong \begin{pmatrix} \det(\boldsymbol{I}) \operatorname{sgn}(\pi) & 0\\ 0 & \mathbf{q}_{3 \operatorname{dim}}(\boldsymbol{I}) \end{pmatrix} = \begin{pmatrix} \operatorname{sgn}(\pi) & 0\\ 0 & I_{3} \end{pmatrix}$$

Unitaries commuting with 2-qubit permutations are given by

$$\begin{pmatrix} \mathcal{U}(1) & 0 \\ 0 & \mathcal{U}(3) \end{pmatrix}$$

$$P_{\pi} = \mathbf{QP}(\mathbf{I}, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n,d)} \mathbf{I}_{\dim(\mathbf{q}_{\lambda})} \otimes \mathbf{p}_{\lambda}(\pi)$$

Example

Recall Schur duality for 2 qubits:

$$P_{\pi} = \mathbf{QP}(\boldsymbol{I}, \pi) \cong \begin{pmatrix} \det(\boldsymbol{I}) \operatorname{sgn}(\pi) & 0\\ 0 & \mathbf{q}_{3 \operatorname{dim}}(\boldsymbol{I}) \end{pmatrix} = \begin{pmatrix} \operatorname{sgn}(\pi) & 0\\ 0 & I_{3} \end{pmatrix}$$

Unitaries commuting with 2-qubit permutations are given by

$$\frac{U_{\rm sch}}{0} \begin{pmatrix} \mathcal{U}(1) & 0 \\ 0 & \mathcal{U}(3) \end{pmatrix} U_{\rm sch}^{\dagger}$$

Theorem Schur transform can be implemented efficiently on a quantum computer.

Theorem

Schur transform can be implemented efficiently on a quantum computer.

 $\bullet\,$ Estimate the spectrum of an unknown mixed state ρ from $\rho^{\otimes n}$

Theorem

Schur transform can be implemented efficiently on a quantum computer.

- $\bullet\,$ Estimate the spectrum of an unknown mixed state ρ from $\rho^{\otimes n}$
 - Apply Schur transform
 - 2 Measure $\lambda \in Par(n, d)$
 - **③** Estimate of spectrum of ρ is given by $(\lambda_1/n, \ldots, \lambda_d/n)$

Theorem

Schur transform can be implemented efficiently on a quantum computer.

- Estimate the spectrum of an unknown mixed state ρ from $\rho^{\otimes n}$
 - Apply Schur transform
 - 2 Measure $\lambda \in Par(n, d)$
 - **③** Estimate of spectrum of ρ is given by $(\lambda_1/n, \ldots, \lambda_d/n)$
- Universal distortion-free entanglement concentration using only local operations.

Theorem

Schur transform can be implemented efficiently on a quantum computer.

- Estimate the spectrum of an unknown mixed state ρ from $\rho^{\otimes n}$
 - Apply Schur transform
 - 2 Measure $\lambda \in Par(n, d)$
 - **③** Estimate of spectrum of ρ is given by $(\lambda_1/n, \dots, \lambda_d/n)$
- Universal distortion-free entanglement concentration using only local operations.
 - Each party applies Schur transform
 - 2 Measure $\lambda \in Par(n, d)$. Discard \mathcal{Q}_{λ} , retaining \mathcal{P}_{λ} .
 - (a) A and B share maximally entangled state of dimension $\dim(\mathcal{P}_{\lambda})$
- Encoding/decoding into decoherence free subspaces

Thank you!

Every representation can be expressed as a direct sum of irreps:

$$\mathbf{P}(\pi) \stackrel{S_n}{\cong} \bigoplus_{\lambda \in \hat{S}_n} \mathbf{p}_{\lambda}(\pi) \otimes I_{n_{\lambda}} \qquad \mathbf{Q}(\mathbf{U}) \stackrel{U_d}{\cong} \bigoplus_{\lambda \in \hat{U}_d} \mathbf{q}_{\lambda}(U) \otimes I_{n_{\lambda}}$$

Every representation can be expressed as a direct sum of irreps:

$$\mathbf{P}(\pi) \stackrel{S_n}{\cong} \bigoplus_{\lambda \in \hat{S}_n} \mathbf{p}_{\lambda}(\pi) \otimes I_{n_{\lambda}} \qquad \mathbf{Q}(\mathbf{U}) \stackrel{U_d}{\cong} \bigoplus_{\lambda \in \hat{U}_d} \mathbf{q}_{\lambda}(U) \otimes I_{n_{\lambda}}$$

Since $\mathbf{P}(\pi)$ and $\mathbf{Q}(\mathbf{U})$ commute, via Schur's lemma we get

$$\mathbf{Q}(\mathbf{U})\mathbf{P}(\pi) \stackrel{U_d \times S_n}{\cong} \bigoplus_{\alpha} \bigoplus_{\beta} \mathbf{q}_{\alpha}(U) \otimes \mathbf{p}_{\beta}(\pi) \otimes I_{m_{\alpha,\beta}}$$

Every representation can be expressed as a direct sum of irreps:

$$\mathbf{P}(\pi) \stackrel{S_n}{\cong} \bigoplus_{\lambda \in \hat{S}_n} \mathbf{p}_{\lambda}(\pi) \otimes I_{n_{\lambda}} \qquad \mathbf{Q}(\mathbf{U}) \stackrel{U_d}{\cong} \bigoplus_{\lambda \in \hat{U}_d} \mathbf{q}_{\lambda}(U) \otimes I_{n_{\lambda}}$$

Since $\mathbf{P}(\pi)$ and $\mathbf{Q}(\mathbf{U})$ commute, via Schur's lemma we get

$$\mathbf{Q}(\mathbf{U})\mathbf{P}(\pi) \stackrel{U_d \times S_n}{\cong} \bigoplus_{\alpha} \bigoplus_{\beta} \mathbf{q}_{\alpha}(U) \otimes \mathbf{p}_{\beta}(\pi) \otimes I_{m_{\alpha,\beta}}$$

Since algebras generated by ${\bf P}$ and ${\bf Q}$ centralize each other, we have $m_{\alpha,\beta}\in\{0,1\}$

$$\mathbf{Q}(\mathbf{U})\mathbf{P}(\pi) \stackrel{U_d \times S_n}{\cong} \bigoplus_{\lambda} \mathbf{q}_{\lambda}(U) \otimes \mathbf{p}_{\lambda}(\pi)$$

Every representation can be expressed as a direct sum of irreps:

$$\mathbf{P}(\pi) \stackrel{S_n}{\cong} \bigoplus_{\lambda \in \hat{S}_n} \mathbf{p}_{\lambda}(\pi) \otimes I_{n_{\lambda}} \qquad \mathbf{Q}(\mathbf{U}) \stackrel{U_d}{\cong} \bigoplus_{\lambda \in \hat{U}_d} \mathbf{q}_{\lambda}(U) \otimes I_{n_{\lambda}}$$

Since $\mathbf{P}(\pi)$ and $\mathbf{Q}(\mathbf{U})$ commute, via Schur's lemma we get

$$\mathbf{Q}(\mathbf{U})\mathbf{P}(\pi) \stackrel{U_d \times S_n}{\cong} \bigoplus_{\alpha} \bigoplus_{\beta} \mathbf{q}_{\alpha}(U) \otimes \mathbf{p}_{\beta}(\pi) \otimes I_{m_{\alpha,\beta}}$$

Since algebras generated by ${\bf P}$ and ${\bf Q}$ centralize each other, we have $m_{\alpha,\beta}\in\{0,1\}$

$$\mathbf{Q}(\mathbf{U})\mathbf{P}(\pi) \stackrel{U_d \times S_n}{\cong} \bigoplus_{\lambda} \mathbf{q}_{\lambda}(U) \otimes \mathbf{p}_{\lambda}(\pi)$$

Finally, it can be shown that the range of λ in previous formula corresponds to $\mathrm{Par}(n,d)$:

$$\mathbf{Q}(\mathbf{U})\mathbf{P}(\pi) \stackrel{U_d \times S_n}{\cong} \bigoplus_{\lambda \in \operatorname{Par}(n,d)} \mathbf{q}_{\lambda}(U) \otimes \mathbf{p}_{\lambda}(\pi)$$