Schur duality

Laura Mancinska

University of Waterloo
July 30, 2008

Outline

(1) Basics of representation theory
(2) Schur duality
(3) Applications

Basics of representation theory

Representation

Definition

A representation $\left(\phi, \mathbb{C}^{n}\right)$ over the vector space \mathbb{C}^{n} of a group G is a homomorphism $\phi: G \rightarrow \operatorname{GL}(n, \mathbb{C})$.

Representation

Definition
A representation $\left(\phi, \mathbb{C}^{n}\right)$ over the vector space \mathbb{C}^{n} of a group G is a homomorphism $\phi: G \rightarrow \operatorname{GL}(n, \mathbb{C})$.

- Homomorphism: $\phi\left(g_{1} g_{2}\right)=\phi\left(g_{1}\right) \phi\left(g_{2}\right)$ for all $g_{1}, g_{2} \in G$
- $\mathrm{GL}(n, \mathbb{C}): n \times n$ invertible complex matrices

Representation

Definition
A representation $\left(\phi, \mathbb{C}^{n}\right)$ over the vector space \mathbb{C}^{n} of a group G is a homomorphism $\phi: G \rightarrow \operatorname{GL}(n, \mathbb{C})$.

Example
Every group has trivial representation $\left(\phi_{\text {triv }}, \mathbb{C}\right): \phi_{\text {triv }}(g)=1$.

Representation

Definition

A representation $\left(\phi, \mathbb{C}^{n}\right)$ over the vector space \mathbb{C}^{n} of a group G is a homomorphism $\phi: G \rightarrow \operatorname{GL}(n, \mathbb{C})$.

Example

Every group has trivial representation $\left(\phi_{\text {triv }}, \mathbb{C}\right): \phi_{\text {triv }}(g)=1$.
Example
S_{n} has representation $\left(\phi_{\mathrm{sgn}}, \mathbb{C}\right)$ given by $\phi_{\mathrm{sgn}}(\pi)=\operatorname{sgn}(\pi)$.

Representation

Definition

A representation $\left(\phi, \mathbb{C}^{n}\right)$ over the vector space \mathbb{C}^{n} of a group G is a homomorphism $\phi: G \rightarrow \operatorname{GL}(n, \mathbb{C})$.

Example

Every group has trivial representation $\left(\phi_{\text {triv }}, \mathbb{C}\right): \phi_{\text {triv }}(g)=1$.
Example
S_{n} has representation $\left(\phi_{\mathrm{sgn}}, \mathbb{C}\right)$ given by $\phi_{\mathrm{sgn}}(\pi)=\operatorname{sgn}(\pi)$.

Example

Representations of $\mathcal{U}(d)$ include:

- $\left(\phi,\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ given by $\phi(U)=U^{\otimes n}$

Representation

Definition

A representation $\left(\phi, \mathbb{C}^{n}\right)$ over the vector space \mathbb{C}^{n} of a group G is a homomorphism $\phi: G \rightarrow \operatorname{GL}(n, \mathbb{C})$.

Example

Every group has trivial representation $\left(\phi_{\text {triv }}, \mathbb{C}\right): \phi_{\text {triv }}(g)=1$.
Example
S_{n} has representation $\left(\phi_{\mathrm{sgn}}, \mathbb{C}\right)$ given by $\phi_{\mathrm{sgn}}(\pi)=\operatorname{sgn}(\pi)$.

Example

Representations of $\mathcal{U}(d)$ include:

- $\left(\phi,\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ given by $\phi(U)=U^{\otimes n}$
- $\left(\phi_{\mathrm{det}}, \mathbb{C}\right)$ given by $\phi_{\operatorname{det}}(U)=\operatorname{det}(U)$

Direct sum and tensor product

Definition

Let $\left(\phi_{1}, V_{1}\right)$ and (ϕ_{2}, V_{2}) be representations of G. Then representations ($\phi_{1} \oplus \phi_{2}, V_{1} \oplus V_{2}$) and ($\phi_{1} \otimes \phi_{2}, V_{1} \otimes V_{2}$) of G are their direct sum and tensor product, respectively.

Direct sum and tensor product

Definition

Let (ϕ_{1}, V_{1}) and (ϕ_{2}, V_{2}) be representations of G. Then representations ($\phi_{1} \oplus \phi_{2}, V_{1} \oplus V_{2}$) and ($\phi_{1} \otimes \phi_{2}, V_{1} \otimes V_{2}$) of G are their direct sum and tensor product, respectively.

Example
Let $\left(\phi_{1}, \mathbb{C}^{2}\right),\left(\phi_{2}, \mathbb{C}\right)$ be representations of $\mathcal{U}(2)$ such that

$$
\phi_{1}(U)=U \quad \phi_{2}(U)=1
$$

Direct sum and tensor product

Definition

Let $\left(\phi_{1}, V_{1}\right)$ and (ϕ_{2}, V_{2}) be representations of G. Then representations $\left(\phi_{1} \oplus \phi_{2}, V_{1} \oplus V_{2}\right)$ and $\left(\phi_{1} \otimes \phi_{2}, V_{1} \otimes V_{2}\right)$ of G are their direct sum and tensor product, respectively.

Example
Let $\left(\phi_{1}, \mathbb{C}^{2}\right),\left(\phi_{2}, \mathbb{C}\right)$ be representations of $\mathcal{U}(2)$ such that

$$
\phi_{1}(U)=U \quad \phi_{2}(U)=1
$$

Then $\left(\phi_{1} \oplus \phi_{2}, \mathbb{C}^{3}\right)$ is their direct sum and $\left(\phi_{1} \otimes \phi_{2}, \mathbb{C}^{2}\right)$ is their tensor product.

$$
\left(\phi_{1} \oplus \phi_{2}\right)(U)=U \oplus 1=\left(\begin{array}{cc}
U & 0 \\
0 & 1
\end{array}\right) \quad\left(\phi_{1} \otimes \phi_{2}\right)(U)=U \otimes 1=U
$$

Irreducible representations

Definition

We say that a representation (ϕ, V) of group G is irreducible if it is not a direct sum of at least two other representations.

Irreducible representations

Definition

We say that a representation (ϕ, V) of group G is irreducible if it is not a direct sum of at least two other representations.

Example
If the representation space V of representation (ϕ, V) is
1-dimensional, then (ϕ, V) is irreducible.

Irreducible representations

Definition

We say that a representation (ϕ, V) of group G is irreducible if it is not a direct sum of at least two other representations.

Example
If the representation space V of representation (ϕ, V) is
1-dimensional, then (ϕ, V) is irreducible.
Theorem
Every representation (ϕ, V) of G is isomorphic to a direct sum of irreducible representations of G :

$$
\phi(g) \cong \bigoplus_{\lambda \in \hat{G}} \lambda(g) \otimes I_{n_{\lambda}}
$$

Schur duality

Representations of $\mathcal{U}(d)$ and S_{n}

Consider representations

- $\left(\mathbf{Q},\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ of $\mathcal{U}(d)$, where

$$
\mathbf{Q}(U)\left|i_{1} i_{2} \ldots i_{n}\right\rangle=U\left|i_{1}\right\rangle U\left|i_{2}\right\rangle \ldots U\left|i_{n}\right\rangle
$$

Representations of $\mathcal{U}(d)$ and S_{n}

Consider representations

- $\left(\mathbf{Q},\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ of $\mathcal{U}(d)$, where

$$
\mathbf{Q}(U)\left|i_{1} i_{2} \ldots i_{n}\right\rangle=U\left|i_{1}\right\rangle U\left|i_{2}\right\rangle \ldots U\left|i_{n}\right\rangle
$$

- $\left(\mathbf{P},\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ of S_{n}, where

$$
\mathbf{P}(\pi)\left|i_{1} i_{2} \ldots i_{n}\right\rangle=\left|i_{\pi^{-1}(1)}\right\rangle\left|i_{\pi^{-1}(2)}\right\rangle \ldots\left|i_{\pi^{-1}(n)}\right\rangle
$$

Representations of $\mathcal{U}(d)$ and S_{n}

Consider representations

- $\left(\mathbf{Q},\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ of $\mathcal{U}(d)$, where

$$
\mathbf{Q}(U)\left|i_{1} i_{2} \ldots i_{n}\right\rangle=U\left|i_{1}\right\rangle U\left|i_{2}\right\rangle \ldots U\left|i_{n}\right\rangle
$$

- $\left(\mathbf{P},\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ of S_{n}, where

$$
\mathbf{P}(\pi)\left|i_{1} i_{2} \ldots i_{n}\right\rangle=\left|i_{\pi^{-1}(1)}\right\rangle\left|i_{\pi^{-1}(2)}\right\rangle \ldots\left|i_{\pi^{-1}(n)}\right\rangle
$$

We can consider representation $\left(\mathbf{Q P},\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ of $\mathcal{U}(d) \times S_{n}$, given by

$$
\mathbf{Q P}(U, \pi)=\mathbf{Q}(U) \mathbf{P}(\pi)
$$

Representations of $\mathcal{U}(d)$ and S_{n}

Consider representations

- $\left(\mathbf{Q},\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ of $\mathcal{U}(d)$, where

$$
\mathbf{Q}(U)\left|i_{1} i_{2} \ldots i_{n}\right\rangle=U\left|i_{1}\right\rangle U\left|i_{2}\right\rangle \ldots U\left|i_{n}\right\rangle
$$

- $\left(\mathbf{P},\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ of S_{n}, where

$$
\mathbf{P}(\pi)\left|i_{1} i_{2} \ldots i_{n}\right\rangle=\left|i_{\pi^{-1}(1)}\right\rangle\left|i_{\pi^{-1}(2)}\right\rangle \ldots\left|i_{\pi^{-1}(n)}\right\rangle
$$

We can consider representation $\left(\mathbf{Q P},\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ of $\mathcal{U}(d) \times S_{n}$, given by

$$
\mathbf{Q P}(U, \pi)=\mathbf{Q}(U) \mathbf{P}(\pi)=\mathbf{P}(\pi) \mathbf{Q}(U)
$$

Schur duality

Theorem. (Schur duality)

There exist a basis (Schur basis) in which representation $\left(\mathbf{Q P},\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ of $\mathcal{U}(d) \times S_{n}$ decomposes into irreducible representations \mathbf{q}_{λ} and \mathbf{p}_{λ} of $\mathcal{U}(d)$ and S_{n} respectively:

$$
\mathbf{Q P}(U, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n, d)} \mathbf{q}_{\lambda}(U) \otimes \mathbf{p}_{\lambda}(\pi)
$$

Schur duality

Theorem. (Schur duality)

There exist a basis (Schur basis) in which representation $\left(\mathbf{Q P},\left(\mathbb{C}^{d}\right)^{\otimes n}\right)$ of $\mathcal{U}(d) \times S_{n}$ decomposes into irreducible representations \mathbf{q}_{λ} and \mathbf{p}_{λ} of $\mathcal{U}(d)$ and S_{n} respectively:

$$
\mathbf{Q P}(U, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n, d)} \mathbf{q}_{\lambda}(U) \otimes \mathbf{p}_{\lambda}(\pi)
$$

Definition

Schur transform $U_{\text {sch }}$ is unitary transformation implementing the base change from standard basis to Schur basis:

$$
U_{\mathrm{sch}}=\sum_{i}\left|\operatorname{sch}_{i}\right\rangle\langle i|
$$

Schur duality

$$
\mathbf{Q P}(U, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n, d)} \mathbf{q}_{\lambda}(U) \otimes \mathbf{p}_{\lambda}(\pi)
$$

Schur duality

$$
\mathbf{Q P}(U, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n, d)} \mathbf{q}_{\lambda}(U) \otimes \mathbf{p}_{\lambda}(\pi)
$$

Example
In case of 2 qubits, i.e., $\left(\mathbb{C}^{2}\right)^{\otimes 2}$ we get

Schur duality

$$
\mathbf{Q P}(U, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n, d)} \mathbf{q}_{\lambda}(U) \otimes \mathbf{p}_{\lambda}(\pi)
$$

Example
In case of 2 qubits, i.e., $\left(\mathbb{C}^{2}\right)^{\otimes 2}$ we get
$\mathbf{Q P}(U, \pi) \cong \overbrace{\left(\mathbf{q}_{\text {det }}(U) \otimes \mathbf{p}_{\text {sgn }}(\pi)\right)}^{\lambda=(1,1)} \oplus \overbrace{\left(\mathbf{q}_{3 \operatorname{dim}}(U) \otimes \mathbf{p}_{\text {triv }}(\pi)\right)}^{\lambda=(2,0)}$

Schur duality

$$
\mathbf{Q P}(U, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n, d)} \mathbf{q}_{\lambda}(U) \otimes \mathbf{p}_{\lambda}(\pi)
$$

Example
In case of 2 qubits, i.e., $\left(\mathbb{C}^{2}\right)^{\otimes 2}$ we get
$\mathbf{Q P}(U, \pi) \cong \overbrace{\left(\mathbf{q}_{\text {det }}(U) \otimes \mathbf{p}_{\text {sgn }}(\pi)\right)}^{\lambda=(1,1)} \oplus \overbrace{\left(\mathbf{q}_{3 \operatorname{dim}}(U) \otimes \mathbf{p}_{\text {triv }}(\pi)\right)}^{\lambda=(2,0)}=$

$$
=\left(\begin{array}{cc}
\operatorname{det}(U) \operatorname{sgn}(\pi) & 0 \\
0 & \mathbf{q}_{3 \operatorname{dim}}(U)
\end{array}\right)
$$

Schur duality

$$
\mathbf{Q P}(U, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n, d)} \mathbf{q}_{\lambda}(U) \otimes \mathbf{p}_{\lambda}(\pi)
$$

Example
In case of 2 qubits, i.e., $\left(\mathbb{C}^{2}\right)^{\otimes 2}$ we get
$\mathbf{Q P}(U, \pi) \cong \overbrace{\left(\mathbf{q}_{\text {det }}(U) \otimes \mathbf{p}_{\text {sgn }}(\pi)\right)}^{\lambda=(1,1)} \oplus \overbrace{\left(\mathbf{q}_{3 \operatorname{dim}}(U) \otimes \mathbf{p}_{\text {triv }}(\pi)\right)}^{\lambda=(2,0)}=$

$$
=\left(\begin{array}{cc}
\operatorname{det}(U) \operatorname{sgn}(\pi) & 0 \\
0 & \mathbf{q}_{3 \operatorname{dim}}(U)
\end{array}\right) \begin{aligned}
& |01\rangle-|10\rangle \\
& |00\rangle,|11\rangle,|01\rangle+|10\rangle
\end{aligned}
$$

Applications

Unitaries commuting with qubit permutations

$$
P_{\pi}=\mathbf{Q P}(I, \pi)
$$

Unitaries commuting with qubit permutations

$$
P_{\pi}=\mathbf{Q P}(I, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n, d)} \mathbf{q}_{\lambda}(I) \otimes \mathbf{p}_{\lambda}(\pi)
$$

Unitaries commuting with qubit permutations

$$
P_{\pi}=\mathbf{Q P}(I, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n, d)} I_{\operatorname{dim}\left(\mathbf{q}_{\lambda}\right)} \otimes \mathbf{p}_{\lambda}(\pi)
$$

Unitaries commuting with qubit permutations

$$
P_{\pi}=\mathbf{Q P}(I, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n, d)} I_{\operatorname{dim}\left(\mathbf{q}_{\lambda}\right)} \otimes \mathbf{p}_{\lambda}(\pi)
$$

Example
Recall Schur duality for 2 qubits:

$$
\mathbf{Q P}(U, \pi) \cong\left(\begin{array}{cc}
\operatorname{det}(U) \operatorname{sgn}(\pi) & 0 \\
0 & \mathbf{q}_{3 \operatorname{dim}}(U)
\end{array}\right)
$$

Unitaries commuting with qubit permutations

$$
P_{\pi}=\mathbf{Q P}(I, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n, d)} I_{\operatorname{dim}\left(\mathbf{q}_{\lambda}\right)} \otimes \mathbf{p}_{\lambda}(\pi)
$$

Example
Recall Schur duality for 2 qubits:

$$
\mathbf{Q P}(I, \pi) \cong\left(\begin{array}{cc}
\operatorname{det}(I) \operatorname{sgn}(\pi) & 0 \\
0 & \mathbf{q}_{3 \operatorname{dim}}(I)
\end{array}\right)
$$

Unitaries commuting with qubit permutations

$$
P_{\pi}=\mathbf{Q P}(I, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n, d)} I_{\operatorname{dim}\left(\mathbf{q}_{\lambda}\right)} \otimes \mathbf{p}_{\lambda}(\pi)
$$

Example
Recall Schur duality for 2 qubits:

$$
P_{\pi}=\mathbf{Q P}(I, \pi) \cong\left(\begin{array}{cc}
\operatorname{det}(I) \operatorname{sgn}(\pi) & 0 \\
0 & \mathbf{q}_{3 \operatorname{dim}}(I)
\end{array}\right)
$$

Unitaries commuting with qubit permutations

$$
P_{\pi}=\mathbf{Q P}(I, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n, d)} I_{\operatorname{dim}\left(\mathbf{q}_{\lambda}\right)} \otimes \mathbf{p}_{\lambda}(\pi)
$$

Example
Recall Schur duality for 2 qubits:
$P_{\pi}=\mathbf{Q P}(I, \pi) \cong\left(\begin{array}{cc}\operatorname{det}(I) \operatorname{sgn}(\pi) & 0 \\ 0 & \mathbf{q}_{3 \operatorname{dim}}(I)\end{array}\right)=\left(\begin{array}{cc}\operatorname{sgn}(\pi) & 0 \\ 0 & I_{3}\end{array}\right)$

Unitaries commuting with qubit permutations

$$
P_{\pi}=\mathbf{Q P}(I, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n, d)} I_{\operatorname{dim}\left(\mathbf{q}_{\lambda}\right)} \otimes \mathbf{p}_{\lambda}(\pi)
$$

Example
Recall Schur duality for 2 qubits:
$P_{\pi}=\mathbf{Q P}(I, \pi) \cong\left(\begin{array}{cc}\operatorname{det}(I) \operatorname{sgn}(\pi) & 0 \\ 0 & \mathbf{q}_{3 \operatorname{dim}}(I)\end{array}\right)=\left(\begin{array}{cc}\operatorname{sgn}(\pi) & 0 \\ 0 & I_{3}\end{array}\right)$

Unitaries commuting with 2-qubit permutations are given by

$$
\left(\begin{array}{cc}
\mathcal{U}(1) & 0 \\
0 & \mathcal{U}(3)
\end{array}\right)
$$

Unitaries commuting with qubit permutations

$$
P_{\pi}=\mathbf{Q P}(I, \pi) \cong \bigoplus_{\lambda \in \operatorname{Par}(n, d)} I_{\operatorname{dim}\left(\mathbf{q}_{\lambda}\right)} \otimes \mathbf{p}_{\lambda}(\pi)
$$

Example
Recall Schur duality for 2 qubits:
$P_{\pi}=\mathbf{Q P}(I, \pi) \cong\left(\begin{array}{cc}\operatorname{det}(I) \operatorname{sgn}(\pi) & 0 \\ 0 & \mathbf{q}_{3 \operatorname{dim}}(I)\end{array}\right)=\left(\begin{array}{cc}\operatorname{sgn}(\pi) & 0 \\ 0 & I_{3}\end{array}\right)$

Unitaries commuting with 2-qubit permutations are given by

$$
U_{\mathrm{sch}}\left(\begin{array}{cc}
\mathcal{U}(1) & 0 \\
0 & \mathcal{U}(3)
\end{array}\right) U_{\mathrm{sch}}^{\dagger}
$$

More applications

Theorem
Schur transform can be implemented efficiently on a quantum computer.

More applications

Theorem

Schur transform can be implemented efficiently on a quantum computer.

- Estimate the spectrum of an unknown mixed state ρ from $\rho^{\otimes n}$

More applications

Theorem

Schur transform can be implemented efficiently on a quantum computer.

- Estimate the spectrum of an unknown mixed state ρ from $\rho^{\otimes n}$
(1) Apply Schur transform
(2) Measure $\lambda \in \operatorname{Par}(n, d)$
(3) Estimate of spectrum of ρ is given by $\left(\lambda_{1} / n, \ldots, \lambda_{d} / n\right)$

More applications

Theorem

Schur transform can be implemented efficiently on a quantum computer.

- Estimate the spectrum of an unknown mixed state ρ from $\rho^{\otimes n}$
(1) Apply Schur transform
(2) Measure $\lambda \in \operatorname{Par}(n, d)$
(3) Estimate of spectrum of ρ is given by $\left(\lambda_{1} / n, \ldots, \lambda_{d} / n\right)$
- Universal distortion-free entanglement concentration using only local operations.

More applications

Theorem

Schur transform can be implemented efficiently on a quantum computer.

- Estimate the spectrum of an unknown mixed state ρ from $\rho^{\otimes n}$
(1) Apply Schur transform
(2) Measure $\lambda \in \operatorname{Par}(n, d)$
(3) Estimate of spectrum of ρ is given by $\left(\lambda_{1} / n, \ldots, \lambda_{d} / n\right)$
- Universal distortion-free entanglement concentration using only local operations.
(1) Each party applies Schur transform
(2) Measure $\lambda \in \operatorname{Par}(n, d)$. Discard \mathcal{Q}_{λ}, retaining \mathcal{P}_{λ}.
(3) A and B share maximally entangled state of dimension $\operatorname{dim}\left(\mathcal{P}_{\lambda}\right)$
- Encoding/decoding into decoherence free subspaces

Thank you!

Outline of proof for Schur duality

Every representation can be expressed as a direct sum of irreps:

$$
\mathbf{P}(\pi) \stackrel{S_{n}}{\cong} \bigoplus_{\lambda \in \hat{S_{n}}} \mathbf{p}_{\lambda}(\pi) \otimes I_{n_{\lambda}} \quad \mathbf{Q}(\mathbf{U}) \stackrel{U_{d}}{\cong} \bigoplus_{\lambda \in \hat{U}_{d}} \mathbf{q}_{\lambda}(U) \otimes I_{n_{\lambda}}
$$

Outline of proof for Schur duality

Every representation can be expressed as a direct sum of irreps:

$$
\mathbf{P}(\pi) \stackrel{S_{n}}{\cong} \bigoplus_{\lambda \in \hat{S_{n}}} \mathbf{p}_{\lambda}(\pi) \otimes I_{n_{\lambda}} \quad \mathbf{Q}(\mathbf{U}) \stackrel{U_{d}}{\cong} \bigoplus_{\lambda \in \hat{U}_{d}} \mathbf{q}_{\lambda}(U) \otimes I_{n_{\lambda}}
$$

Since $\mathbf{P}(\pi)$ and $\mathbf{Q}(\mathbf{U})$ commute, via Schur's lemma we get

$$
\mathbf{Q}(\mathbf{U}) \mathbf{P}(\pi) \stackrel{U_{d} \times S_{n}}{\cong} \bigoplus_{\alpha} \bigoplus_{\beta} \mathbf{q}_{\alpha}(U) \otimes \mathbf{p}_{\beta}(\pi) \otimes I_{m_{\alpha, \beta}}
$$

Outline of proof for Schur duality

Every representation can be expressed as a direct sum of irreps:

$$
\mathbf{P}(\pi) \stackrel{S_{n}}{\cong} \bigoplus_{\lambda \in \hat{S_{n}}} \mathbf{p}_{\lambda}(\pi) \otimes I_{n_{\lambda}} \quad \mathbf{Q}(\mathbf{U}) \stackrel{U_{d}}{\cong} \bigoplus_{\lambda \in \hat{U}_{d}} \mathbf{q}_{\lambda}(U) \otimes I_{n_{\lambda}}
$$

Since $\mathbf{P}(\pi)$ and $\mathbf{Q}(\mathbf{U})$ commute, via Schur's lemma we get

$$
\mathbf{Q}(\mathbf{U}) \mathbf{P}(\pi) \stackrel{U_{d} \times S_{n}}{\cong} \bigoplus_{\alpha} \bigoplus_{\beta} \mathbf{q}_{\alpha}(U) \otimes \mathbf{p}_{\beta}(\pi) \otimes I_{m_{\alpha, \beta}}
$$

Since algebras generated by \mathbf{P} and \mathbf{Q} centralize each other, we have $m_{\alpha, \beta} \in\{0,1\}$

$$
\mathbf{Q}(\mathbf{U}) \mathbf{P}(\pi) \stackrel{U_{d} \times S_{n}}{\cong} \bigoplus_{\lambda} \mathbf{q}_{\lambda}(U) \otimes \mathbf{p}_{\lambda}(\pi)
$$

Outline of proof for Schur duality

Every representation can be expressed as a direct sum of irreps:

$$
\mathbf{P}(\pi) \stackrel{S_{n}}{\cong} \bigoplus_{\lambda \in \hat{S_{n}}} \mathbf{p}_{\lambda}(\pi) \otimes I_{n_{\lambda}} \quad \mathbf{Q}(\mathbf{U}) \stackrel{U_{d}}{\cong} \bigoplus_{\lambda \in \hat{U}_{d}} \mathbf{q}_{\lambda}(U) \otimes I_{n_{\lambda}}
$$

Since $\mathbf{P}(\pi)$ and $\mathbf{Q}(\mathbf{U})$ commute, via Schur's lemma we get

$$
\mathbf{Q}(\mathbf{U}) \mathbf{P}(\pi) \stackrel{U_{d} \times S_{n}}{\cong} \bigoplus_{\alpha} \bigoplus_{\beta} \mathbf{q}_{\alpha}(U) \otimes \mathbf{p}_{\beta}(\pi) \otimes I_{m_{\alpha, \beta}}
$$

Since algebras generated by \mathbf{P} and \mathbf{Q} centralize each other, we have $m_{\alpha, \beta} \in\{0,1\}$

$$
\mathbf{Q}(\mathbf{U}) \mathbf{P}(\pi) \stackrel{U_{d} \times S_{n}}{\cong} \bigoplus_{\lambda} \mathbf{q}_{\lambda}(U) \otimes \mathbf{p}_{\lambda}(\pi)
$$

Finally, it can be shown that the range of λ in previous formula corresponds to $\operatorname{Par}(n, d)$:

$$
\mathbf{Q}(\mathbf{U}) \mathbf{P}(\pi) \stackrel{U_{d} \times S_{n}}{\cong} \bigoplus_{\lambda \in \operatorname{Par}(n, d)} \mathbf{q}_{\lambda}(U) \otimes \mathbf{p}_{\lambda}(\pi)
$$

